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Abstract
The elastic atomic photon scattering form factor amplitude Af 0, obtained from
the high energy and low momentum transfer (K) limit of the exact (within the
independent particle approximation (IPA)) Rayleigh relativistic second order
S-matrix scattering amplitude Asm is decomposed into an infinite sum of its
electric and magnetic field multipoles. The energy-dependent part of Af 0

(the scattering angle-dependent part of Af 0 is incorrect due to the low K
approximation), combined with the angle-dependent part of Asm, yields a form
factor amplitude Af (different versions of Af and Af 0 will be described in the
text) that can be used to decompose the anomalous scattering factor Aasf into
its multipoles. Af 0 which initially contains coherent and incoherent factors
is reduced to a single sum over the multipoles of only coherent terms by
assuming that the charge density is spherically symmetric. At photon energies
up to about ten times the K-shell binding energy it takes up to quadrupole Aasf

for light atoms of Z � 20 and up to the fourth multipole for heavy atoms
such as uranium for an accurate Aasf (within IPA). The multipole contributions
were found to become somewhat larger as the scattering angle becomes larger
(greater than 120◦); however there were partial cancellations of such effects.

PACS number: 32.80.Cy

1. Introduction

Rayleigh scattering is a process in which photons are scattered off bound electrons with no
loss of photon energy (the frequency of the incident and scattered photon are the same). This
process is named after Lord Rayleigh (John William Strutt), who explained the blue colour
of the sky in terms of preferential scattering of short wavelength sunlight by molecules in
the upper atmosphere. Even though Rayleigh scattering is an elastic process, momentum is
transferred to the atom if the direction of the photon is altered by collision with the atom.
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The collision causes bound electrons to be promoted to higher levels, but the atom returns to
its initial state when the process is completed. Rayleigh scattering can be used to probe the
electronic properties of atoms, molecules and materials. It is also a very useful tool in medical
research and diagnostics.

Theoretical Rayleigh scattering cross sections (including differential cross sections) are
obtained from a matrix element AR . An exact value for AR can be obtained in principle from the
theory of relativistic quantum electrodynamics. An exact AR within the independent particle
approximation (IPA) has been obtained from second order S-matrix theory. The corresponding
matrix element Asm = Asm

a + Asm
e is composed of two sets of integral terms each summed

over all excited states, one corresponding to an absorption first Asm
a the other to emission

first Asm
e scattering diagram (see for example [1, 2] for further details and discussion). The

S-matrix formalism was later extended to fourth order perturbation in order to include the most
important electron–electron correlation diagrams for a two electron atom or ion [3]. Kissel
et al [4] created a rather extensive code based on the Dirac–Slater potential for computing
Rayleigh differential cross sections within IPA for photon energies ranging from 100 eV to
10 MeV. However, since the formalism the code is based on includes a multipole expansion
of the vector potential, the number of multipoles required for an accurate Asm increases
with increasing photon energy. In order to save computation time and avoid convergence
problems when calculating whole atom cross sections, the approach was to obtain outer shell
contributions to the amplitude using form factors, then use S-matrix theory to get the inner
shell contributions.

Some of the various approximate theoretical methods for the computation of Rayleigh
scattering differential cross sections include the form factor, a modification of the form factor
and the form factor (or modified form factor) plus the anomalous scattering factor. These
methods were evaluated by comparison to the more accurate S-matrix values [5]. The form
factor f (q), which is exact only in the case of 1S0, is given by

f (q) = 4π
∑

p

∫ ∞

0
Hp(r)ρp(r)

[
sin(qr)

qr

]
r2 dr, (1)

ρp(r) is the charge density for the subshell p, q is the magnitude of the photon momentum
transfer where, q = h−1|Ki − Kf | with Ki and Kf the momentum vectors for the incident and
scattered photons respectively and Hp(r) = 1. In the modified form factor as described in [5],
Hp(r) = [|Ep| − V (r)]−1, (Ep is the binding energy for an electron in the subshell p, V (r) is
the potential). Here Hp(r) includes some of the electron nuclear Coulomb effects. A better
approximate method involves addition of a correction to the form factor (or modified form
factor) called the anomalous scattering factor. The corresponding amplitude for this correction
Aasf is defined as the difference between the exact Rayleigh amplitude and the high energy
limit of the Rayleigh amplitude. Aasf is given by the sum of a real and imaginary amplitude,
where in the case of forward angle scattering, the imaginary amplitude is proportional to the
corresponding photoeffect cross section σph resulting from the optical theorem, while the real
component is a function of the imaginary one due to a dispersion relationship [5–7]. Aasf can
be obtained for forward angle scattering from σph at energies below 2mc2 and at energies at
which resonances do not occur.

Even though Aasf is not strongly scattering angle dependent, such Aasf values obtained
from σph still become progressively less accurate with increasing angle. An angle-dependent
version of Aasf was derived from a nonrelativistic Coulombic function that includes corrections
beyond the dipole amplitude for the K-shell case [8, 9]. Decomposition of a relativistic Aasf

by taking the difference between Asm and Af at corresponding multipoles and subshells
(i.e. Aasf = ∑

pj

[
Asm

pj − A
f

pj

]
(j is the 2j th pole) can provide a useful guide to anyone who
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is interested in deriving an angle-dependent Aasf that would go beyond the K-shell and be
accurate for any atom. Here one could assess the magnitude of each multipole contribution
to the elastic scattering amplitude for each subshell in a given energy regime and make
comparisons to any newly derived results. One would expect the multipole requirements of
Aasf to be similar to that for σph [10] at forward angle; however nothing is known about the
multipole requirements of Aasf at finite angles.

The calculations presented in this paper were done within IPA using a Dirac–Slater
potential. This model is generally good at high photon energies even though it is now
understood that electron–electron correlation contributions can be significant at these energies
for non-s states as was shown to be the case for photoeffect [11]. However it was later found
that net correlation contributions are generally small due to partial cancellation of such effects
[12]. Clearly IPA results would not include contributions such as those due to giant resonances
which are strongly dependent on electron–electron correlations and relaxation effects such as
for example that described in [13].

In the work presented in this paper, the form factor amplitude obtained from the high
energy low momentum transfer limit of the S-matrix amplitude is decomposed into electric
and magnetic field multipoles. f (q) as given by equation (1), which can be factored out
from Af , will be referred to as the form factor (not an amplitude). f (q) is proportional to
the scattering amplitude for the case of polarization perpendicular to the scattering plane,
designated by A

f

⊥ = −r0f (q), while the total form factor amplitude for elastic scattering is
given by Af = A

f

⊥[1 + cos(θ)] (see p 80 in [14]). The multipole decomposed Asm and Af

amplitudes will be used to obtain the multipole decomposed anomalous scattering amplitude
Aasf . This work, along with providing a useful guide for the extension of finite angle scattering
Aasf to heavy atoms, will hopefully enhance ones understanding of the relationships between
the form factor and S-matrix expressions for elastic photon scattering amplitudes.

2. Theory and formalism

2.1. S-matrix formalism and some relevant definitions

The expression for the elastic (Rayleigh) S-matrix element in the limit of high photon energy
and low momentum transfer K is given by (see [5, 15] also see appendix A)

Asm � ro[εi · ε∗
f ]

∑
p

〈
p

∣∣∣∣ e−iK·r

|Ep| − V − c(K̄ · P)

∣∣∣∣p
〉
, (2)

where m = c = 1. Assuming low K, the form factor amplitude Af 0 (Af 0 includes both the
modified and unmodified form factor amplitudes throughout this paper) results if c(K̄ · P) is
omitted yielding

Af 0 = −ro[εi · ε∗
f ]

∑
p

∫
ρp(r)Hp(r) exp(−iK · r) dτ. (3)

Here εi and εf are the polarization vectors for the incident and scattered photon respectively
and r0 is the classical electron radius. The sum is over atomic subshells p, each designated
by a set of quantum numbers n,m and κ (κ is the relativistic quantum number defined as
κ = ∓(jp +1/2) with jp = l ±1/2), P is the electron momentum vector, for small momentum
transfer K̄ = Ki ≈ Kf . Hp = [|Ep| − V (r)]−1 for the modified form factor and Hp = 1 for
the unmodified form factor amplitudes.
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The exponent in equation (3) can be expanded as a product of two plane waves, one for
the incident the other for the scattered photon, doubly summed over j and M,

[ε̂i ε̂
∗
f ] exp(−iK · r) =

∑
jMλ

∑
j ′M ′

(−1)j+j ′[
aλ

jM(r) · aλ
j′M′(r)

][
Cλ

jM(Ki)C
λ
j ′M ′(Kf)

]
, (4)

where the vector potential aλ
jM, is of multiplicity λ, such that the magnetic field corresponds

to λ = 0 and the electric field to λ = 1, j is the multipolarity (2j -pole, j � 1, an integer) and
M is the total angular momentum. Unprimed subscripts refer to the incident photon (initial
photon state), primed to scattered photon (final photon state). Here

a0
jM(r) = jj (kr)YjjM(r)

(5)

a1
jM(r) =

(
j + 1

2j + 1

)1/2

jj−1(kr)Yjj−1M(r) −
(

j

2j + 1

)1/2

jj+1(kr)Yjj+1M(r),

where jl(kr) is a spherical Bessel function and Yjlm(r̂) is the angular momentum vector
spherical harmonics (VSH) in which l = j ±1 for the electric field and l = j for the magnetic
field. The scattering angle-dependent part of the plane waves for λ = 0, 1 is given by

C0
jM(K) = YjjM(K) · ε̂

(6)

C1
jM(K) =

[(
j

2j + 1

)1/2

Yjj+1M(K) +

(
j + 1

2j + 1

)1/2

Yjj−1M(K)

]
· ε̂

[1, 5], where ε̂ is the unit polarization vector. YjlM(K) is given by

YjlM(K) =
∑
mq

Ylm(K)ε̂q(lm1q|l1jM), (7)

where q = 0,±1,m + q = M, ε̂±1 = ∓(
1
2

)1/2
([εx] ± i[εy]) and ε̂0 = εz: (lm1q|l1jM) is the

vector coupling coefficient (VCC) [16].

2.2. An expression for Af 0 having coherent and incoherent terms doubly summed
over both multipoles and angular momentum

The form factor amplitude in spherical polar coordinates is given by

magAf 0(K) = −r0[εiεf ]
∑

jj ′MM ′p

(−1)j+j ′[
Vpjj ′(E)W

p

jj ′jj ′MM ′
]

× [YjjM(Ki) · ε̂i][Yj′j′M′(Kf) · ε̂f ] (8)

for the magnetic field and

elAmf 0(K) = −r0[εiεf ]
∑

jj ′MM ′p

(−1)j+j ′
{[(

j + 1

2j + 1

)1/2 (
j ′ + 1

2j ′ + 1

)1/2

Vpj−1j ′−1(E)

×W
p

jj ′j−1j ′−1MM ′ −
(

j

2j + 1

)1/2 (
j ′ + 1

2j ′ + 1

)1/2

Vpj+1j ′−1(E)W
p

jj ′j+1j ′−1MM ′

−
(

j + 1

2j + 1

)1/2 (
j ′

2j ′ + 1

)1/2

Vpj−1j ′+1(E)W
p

jj ′j−1j ′+1MM ′

+

(
j

2j + 1

)1/2 (
j ′

2j ′ + 1

)1/2

Vpj+1j ′+1(E)W
p

jj ′j+1j ′+1MM ′

]
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×
{[(

j

2j + 1

)1/2

Yjj+1M(Ki) +

(
j + 1

2j + 1

)1/2

Yjj−1M(Ki)

]

× ε̂i

[(
j ′

2j ′ + 1

)1/2

Yj′j′+1M′(Kf) +

(
j ′ + 1

2j ′ + 1

)1/2

Yj′j′−1M′(Kf)

]
· ε̂f

}}
(9)

for the electric field. Here E is the photon energy, and Vpll′(E) represents the radial integrals
for an electron in subshell p and is given by

Vpll′(E) =
∫ ∞

0
ρp(r)Hp(r)jl(kr)jl′(kr)r2 dr, (10)

where ρp(r) contains radial wavefunctions designated by |nκm〉. The angular momentum
integral for the subshell p is given by

W
p

jj ′ll′MM ′ =
∫ π

0

∫ 2π

0
YjlM(θ, φ) · Yj′l′M′(θ, φ)
2

p(θ, φ) sin θ dθ dφ. (11)

Here 
p(θ, φ) is composed of the VCC, the spherical harmonics and a spinor corresponding
to the subshell p.

2.3. Reduction of the expression for Af 0 to one having a single multipole sum over only
coherent terms

Af 0, based on equations (8) and (9), is given as a double sum over j and M, which includes
coherent and incoherent terms. If one assumes that the charge density is spherically symmetric,
thereby setting 
p(θ, φ) = 1 in equation (11), equations (8) and (9) reduce to much simpler
expressions. Here W

p

jj ′ll′MM ′ reduces to Wjj ′ll′MM ′ , which is equal to a product of Kronecker
deltas

Wjj ′ll′MM ′ =
∫ π

0

∫ 2π

0
YjlM(θ, φ) · Yj′l′M′(θ, φ) sin θ dθ dφ = δjj ′δll′δMM ′ , (12)

and the radial integral in these two equations is now given by

Vpl(E) =
∫ ∞

0
ρp(r)Hp(r)j 2

l (kr)r2 dr. (13)

The angle-dependent part of equations (8), (9) are simplified by placing the incident photon on
the z-axis with scattering on the x–z plane. This can be achieved by starting with YjlM(θ̄ , φ̄),
where θ̄ is the angle between either the incident or scattered photon and the z-axis and φ̄ is
the azimuthal angle about the x–y plane (bar signifies experimental geometry). Setting the
azimuthal angle, φ̄ = 0◦ with the incident photon along the z-axis (i.e. θ̄ i = 0◦) places the
photon scattering on the x–z plane resulting in

Yl0(0, 0) =
(

2l + 1

4π

)1/2

Ylm(0, 0) = 0 m 
= 0 (14)

for the incident photon and

Ylm′(θ̄f , 0) =
[

2l + 1

4π

(l − |m′|)!
(l + |m′|)!

]1/2

P m′
l (x) (15)

for the scattered photon, where θ̄ f is the angle for the scattered photon, here θ̄ is the angle
between the incident (on the z-axis) and scattered photons; thus θ̄ = θ̄ f and x = cos (θ̄).
Due to the assumptions about symmetry of the charge distribution, filled subshells and the
scattering geometry, m = m′, the only nonzero terms remaining in equations (8) and (9) are
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those which contain a product of Ylm(0, 0)·Ylm(θ̄f , 0) in which m = 0. Also due to m+q = M

(see the text below equation (7)), only terms in which q = M are nonzero. Thus substitution
of equations (14) and (15) into equation (7), where ε̂q · ε̂∗

q′ = δqq ′ (see equation 5.9.7 in [16])
followed by the substitution of equation (7) into equations (8) and (9), results in the following
formulae for magnetic and electric field form factor amplitudes

magAf 0(E, θ̄) = −roεiεj

∑
pj

(2j + 1)I 0
pj (E)

1∑
q=−1

Pj (x)(j01q|j1jq)2 (16)

elAf 0(E, θ̄) = −r0εiεj

∑
pj

I 1
pj (E)

1∑
q=−1

[Bqj (θ̄) + Cqj (θ̄) + Dqj (θ̄)]

Bqj (θ̄) = B ′
qjPj+1(x)

B ′
qj = j (2j + 3)(j + 1, 01q|j + 1, 1jq)2

Cqj (θ̄) = C ′
qj [Pj+1(x) + Pj−1(x)]

C ′
qj = [j (j + 1)(2j + 3)(2j − 1)]1/2(j + 1, 01q|j + 1, 1jq)(j − 1, 01q|j − 1, 1jq)

Dqj (θ̄) = D′
qjPj−1(x)

D′
qj = (j + 1)(2j − 1)(j − 1, 01q|j − 1, 1jq)2.

Here the energy-dependent radial integrals represented by Iλ
pj (E) for λ = 0, 1 are given by

I 0
pj (E) = Vpj (E) I 1

pj (E) = (j + 1)Vpj−1(E) + jVpj+1(E)

(2j + 1)
. (18)

When q = 0, (j010|j1j0) = 0 in equation (16). In equation (17) B ′
0j = D′

0j = j (j + 1)

and C ′
0j = −j (j + 1), therefore B0j (θ̄ ) + C0j (θ̄ ) + D0j (θ̄ ) = 0 for all j and θ̄ . As a

result the q = 0 contribution in equations (16) and (17) is zero. Furthermore, due to the
previously stated conditions, the q = 1 and q = − 1 terms in these two equations are equal. In
equation (16), (j011|j1j1)2 = (j01−1|j1j −1)2 = 1/2 and in equation (18) B ′

1j = B ′
−1j =

j 2/2; C ′
1j = C ′

−1j = j (j + 1)/2 and D′
1j = D′

−1j = (j + 1)2/2. As a result, equations (16)
and (17) reduce to

magAf 0(E, θ̄) = −r0εiεj

∑
pj

(2j + 1)I 0
pj (E)Pj (x) (19)

for the magnetic field and to

elAf 0(E, θ̄) = −r0εiεj

∑
pj

I 1
pj (E)[jPj+1(x) + (j + 1)Pj−1(x)] (20)

for the electric field. The low K form factor amplitude can now be expressed compactly as

Af 0(E, θ̄) = −r0[εiεf ]
∑
pj

{(2j + 1)I 0
pjPj (x) + I 1

pj (E)[jPj+1(x) + (j + 1)Pj−1(x)]}. (21)

2.4. Partitioning of Af 0 into A
f 0
⊥ and A

f 0
‖

Af 0 can be partitioned into parallel A‖ and perpendicular A⊥ polarization vector amplitudes
(A‖, the x component and A⊥, the y component of polarization) and is given by

[εiεf ]Af 0(E, θ̄) = [
ε⊥
i ε⊥

f

]
A

mf

⊥ (E, θ̄) +
[
ε

‖
i ε

‖
f

]
A

mf

‖ (E, θ̄) cos(θ̄). (22)
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This transformation can be verified by using recursion formulae for Legendre and associated
Legendre polynomials (see appendix B). Similarly the Rayleigh S-matrix amplitude is given
by (from [1, 2, 4])

[εiεf ]Asm(E, θ̄) = [
ε⊥
i ε⊥

f

]
Asm

⊥ (E, θ̄) +
[
ε

‖
i ε

‖
f

]
Asm

‖ (E, θ̄). (23)

Here

A‖(E, θ̄) = −r0

∑
pj

(2j + 1)

2

[
S(θ̄)G1

pj (E) + T (θ̄)G0
pj (E)

]
(24)

and

A⊥(E, θ̄) = −r0

∑
pj

(2j + 1)

2

[
S(θ̄)G0

pj (E) + T (θ̄)G1
pj (E)

]
, (25)

where Gλ
pj (E) represents the energy dependent, scattering angle-independent part of the

amplitude. In the case of the full S-matrix representation of Rayleigh scattering Asm,Gλ
pj (E) =

Xλ
pj (E) (Xλ

pj (E) is the X-amplitude, defined in [1, 14] for example) and in the case of the form
factor amplitude Af 0,Gλ

pj (E) = I λ
pj (E), where I λ

pj (E) is given by equation (18). S(θ̄) and
T (θ̄) composed of Legendre P 0

j (x) and associated Legendre P 2
j (x) polynomials are given by

S(θ̄) = P 0
j (x) − P 2

j (x)

j (j + 1)
(26)

T (θ̄) = P 0
j−1(x) + P 0

j+1(x)

2
+

P 2
j−1(x) + P 2

j+1(x)

2j (j + 1)
. (27)

2.5. Comparison between Asm, Af 0 and f (q); correction of θ̄ dependence of Af 0

The energy-dependent components of Asm and Af 0, Xλ(E) and I λ(E) respectively approach
convergence with each other as the photon energy increases, but differ greatly at low energies
especially at energies at which resonances occur (this will be illustrated in the results and
discussion section). Due to the low K approximation the θ̄ dependence of Asm and Af 0

differ by the presence of cos(θ̄) in the A‖ part of Af 0 in equation (22), but not present in
Asm, equation (23). Clearly in the limits of high E and low K, which leads to a small θ̄ , the
angle-dependent component of Af 0 is very close to that for Asm.

The connection between Af 0 and f (q) is illustrated by demonstrating that f (q) can be
factored out of the expression for Af 0 simply by dividing it by r0[1+cos2(θ̄)]. This can be done
because Af 0 = A

f

⊥ + cos(θ̄)A
f

‖ , where A
f

⊥ = r0f (q), and A
f

‖ = cos(θ̄)A
f

⊥ = r0 cos θ̄f (q)

[5, 14], which yields

[εiεf ]f (q) = [εiεf ]Af

⊥(E, θ̄) = Af 0(E, θ̄)/r0(1 + cos2θ̄ ). (28)

Equations (1) and (28) for f (q) always yield the same numerical values. However if one
is interested in a multipole decomposed Af and Aasf valid at all θ̄ , it becomes necessary
to replace the angle-dependent part of Af 0 with that for Asm. This can be achieved
by substitution of A

f

⊥ and A
f

‖ into equation (23) in place of Asm
⊥ and Asm

‖ yielding a
form factor amplitude designated by Af , which has the same angle dependence as Asm.
Alternatively one can replace Xλ

pj by I λ
pj (in equation (23)) and obtain a form factor

amplitude in which each of its multipoles has the same angle dependence as those of Asm,
[εiεj ]Af (E, θ̄) = [

ε⊥
i ε⊥

f

]
A

f

⊥(E, θ̄)+
[
ε

‖
i ε

‖
f

]
A

f

‖ (E, θ̄), which is what was done for calculations
illustrated in this paper. This makes it possible to calculate single multipole contributions to
Aasf for a given subshell (i.e. Aasf

pj = Asm
pj − A

f

pj ).
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Figure 1. First four multipole amplitudes in Xλ
pj (E), mf Iλ

pj (E) and ff Iλ
pj (E), respectively: where

j corresponds to the 2j -pole and λ = 0, 1 to magnetic and electric field multipoles respectively and
p = 1s1/2. All calculations were done using the Dirac–Slater potential. Uranium atom, Z = 92;
subscript p is omitted in all graphical labels (applies to all graphs in this paper). In all four graphs,
X1

j corresponds to the dark solid line; mf I 1
j to the dark dashed line; ff I 1

j to the dotted line; X0
j

to the finely dotted line; mf I 0
j to the dot-dash line and ff I 0

j to the fine dot-dash line. (a) j = 1;
(b) j = 2; (c) = 3; (d) j = 4.

3. Results and discussion

3.1. Energy and scattering angle dependence of various S-matrix and form
factor amplitudes

The form factor amplitude, has been decomposed into subshells as well as the electric
and magnetic field multipoles, such that it can be expressed in the same form as the
decomposed S-matrix elastic photon scattering amplitude Asm. In this discussion, when
Hp(r) = [|Ep| − V (r)]−1, Af will be referred to as the modified form factor amplitude
designated by Amf , if the θ̄ dependence is correct and by Amf 0 if the K → 0 approximation is
in effect. When Hp(r) = 1, Af having the correct θ̄ dependence will be represented by Aff

or by Aff 0 when K → 0. One can make a direct comparison between the multipoles of the
X-amplitudes Xλ

pj (from Asm) and those of the form factor amplitude radial integral f I λ
pj (from

Af ). Such a comparison is given in figure 1 for the uranium K-shell, illustrating the photon
energy dependence of Xλ

pj from Asm
pj , which is exact within IPA; the modified form factor

radial integral mf Iλ
pj from A

mf

pj (has the same E dependence as in A
mf 0
pj ); and the form factor

radial integral ff I λ
pj , from A

ff

pj (same E dependence as in A
ff 0
pj ). All calculations are done



Multipole decomposition of the elastic atomic photon scattering form factor 5097

within IPA using a Dirac–Slater potential. The K shell of a heavy atom was chosen because
one can illustrate the largest possible differences between Xλ

pj ,
mf I λ

pj and ff I λ
pj . A second

reason is that as the scattering angle increases, the amplitude (i.e. Asm and Af ) for whole atom
photon scattering rapidly becomes dominated by contributions from the innermost shells.

Investigation of the first four electric and magnetic field multipole amplitudes over a
photon energy range of 120 keV–4 MeV demonstrates that the Xλ

pj and mf Iλ
pj (p = 1s1/2

throughout this paper) curves are much closer to each other than is the ff I λ
pj curve, the former

two merging with increasing energy while the latter not merging with Xλ
pj . This result confirms

that partial inclusion of the electron–nuclear Coulomb effects contained in Hp (equation (3))
provides for a much better form factor amplitude. These graphs show that the electric field
dipole is dominant at energies below about 0.5 MeV for the uranium K-shell. However as
the photon energy increases the number of significant magnetic and electric field multipoles
increases. The differences between Xλ

pj ,
mf I λ

pj and ff I λ
pj beyond electric field dipole are nearly

zero for a middle shell amplitude such as the 4s1/2 subshell (in uranium). Even in the electric
field dipole, the differences are very small except at energies at which resonances occur. The
very small difference between mf Ij and ff Ij for all j is expected since Coulomb effects
are relatively small for middle subshells. The differences between Xλ

pj ,
mf I λ

pj and ff I λ
pj

decrease as one goes from inner to outer shells in a given atom as well as going to lower Z for
the same subshell.

Figure 2 illustrates the energy dependence of the first four multipoles of Asm
pj using

equation (23), of the modified form factor amplitude, A
mf

pj using equation (23) but replacing

Xλ
pj by mf Iλ

pj and of A
mf 0
pj using equation (21) which is equivalent to equation (22). These

results are for the K-shell of uranium with a scattering angle θ̄ = 50◦. For simplicity the
product of polarization magnitudes ε⊥

i ε⊥
f and ε

‖
i ε

‖
j were taken to be unity giving A⊥ and A‖

equal weight and r0 is not included in the amplitudes (same applies to all subsequent figures).
Here the Asm

pj and A
mf

pj curves are very close at energies above 0.5 MeV and almost merge at
4.0 MeV. From this graph, as well as from figure 1, it is clear that the higher the multipole, the
higher is the energy at which the amplitude for a given multipole reaches its maximum.

3.2. Validity of the low momentum transfer approximation in Amf 0

The curves for the Amf 0 and Amf amplitudes for the uranium K-shell are the same at θ̄ = 0,
where A⊥ = A‖ and differ by as much as about 25% in the range 0◦ � θ̄ � 90◦. At 90◦

the difference is virtually zero because A‖ ≈ 0, but as θ̄ increases above 90◦ the difference
between these two amplitudes increases rapidly, because |A‖| now increases approaching
|A⊥| in magnitude while cos θ̄ has changed sign. These trends are reflected in the energy
dependence of the total amplitudes Asm

p = ∑
j Asm

pj , A
mf
p = ∑

j A
mf

pj and A
mf 0
p = ∑

j A
mf 0
pj

at θ̄ = 25◦, 50◦, 90◦ and 150◦ shown in figure 3. At 25◦ all three curves are very close,
with the maximum difference between Amf and Amf 0 of less than 5%, occurring at the lowest
energies. The differences between all three amplitudes in the angle range 0◦ � θ̄ � 90◦ are
very small at energies greater than about 0.5 MeV. These results are of interest if one intends
to demonstrate that the form factor amplitude can be derived from the S-matrix formalism.
Such a derivation can be accomplished by imposing the low momentum transfer condition to
the nonexponential part of the S-matrix element to make it possible for the Dirac α matrix
containing terms to cancel out (see equation (3) and Goldberger equation (2.7) Zhou [15,
p 49] or appendix A). Comparison of equations (22) and (23) reveals that such a form factor
amplitude (Af 0) has the wrong angle dependence. Despite this, Af 0 (includes Amf 0 and Aff 0)
is a fairly good approximation to Af (includes Amf and Aff ) at high energy, when θ � 90◦.
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Figure 2. First four multipoles of elastic photon scattering amplitudes: Asm
pj (E, θ̄) is obtained

from equation (23); A
mf

pj (E, θ̄) is also obtained from equation (23), but Xλ
pj (E) is replaced by

mf Iλ
pj (E); and A

mf 0
pj (E, θ̄) is obtained from equation (21). Uranium atom, p = 1s1/2, θ̄ = 50◦.

Polarization magnitudes are taken to be unity and r0 is omitted, resulting in a unitless amplitude
comparable to the form factor f (q) (same applies to all subsequent graphs in the paper). (a) j =
1; (b) = 2; (c) j = 3; (d) j = 4.

Furthermore one can obtain the form factor f (q) (equation (1)) from the S-matrix formalism
by simply dividing Af 0 by r0(cos2 θ̄ + 1) (see equation (28)).

3.3. Behaviour of Re Aasf and Re Aasf
j

The real part of the anomalous scattering factor Re Aasf
pj = [

Re Asm
pj − A

mf

pj

]
up to the first four

multipoles, as well as the total Re Aasf summed over the first 32 multipoles is shown in figure 4.
These amplitudes pertain to the K-shell of uranium at scattering angles of 0◦, 50◦, 100◦ and
150◦. In this particular case the relative dipole contribution to Aasf at lower energy appears to
be greater at small angles, while at larger angles, higher multipole contributions become more
substantial, especially at θ̄ = 150◦, where even the third and fourth multipoles contribute
significantly. Note that at all angles, Aasf is nearly zero at about 2 MeV, while Aasf

j is still
of significant magnitude especially at large angles. Here the Aasf

j s appear to cancel each
other out resulting in Aasf converging to zero faster than the individual Aasf

j . Aside from the
resonances, the beyond dipole contribution to the uranium 4s1/2 shell Aasf is nearly negligible
at all angles. The same is true for all higher atomic levels. Only up to quadrupole Aasf

j are

significant for the K-shell of a light atom like Ca (figure 5) and only dipole electric field A
mf

j

for an L shell or higher level.
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Figure 3. Angle and energy dependence of total elastic photon scattering amplitudes: Asm
p (E, θ̄) =∑n

j Asm
pj (E, θ̄), A

mf
p (E, θ̄) = ∑n

j A
mf

pj (E, θ̄) and A
mf 0
p (E, θ̄) = ∑n

j A
mf 0
pj (E, θ̄). Uranium atom,

p = 1s1/2, n = 32, units correspond to amplitudes in figure 2. (a) θ̄ = 25◦; (b) 50◦; (c) 90◦ and
(d) 150◦.

As the photon energy increases, the magnitude of Asm decreases approaching zero as does
Aasf . However, one may ask if the magnitude of Aasf relative to Asm, given by Āasf = Aasf/Asm

also approaches zero with increasing E. Here Āasf does in fact approach zero for all shells of
light atoms like Ca and for middle and outer shells of heavy atoms, but it increases for the
inner shells of heavy atoms especially at large angles. For example Āasf is about 0.8 in the case
of the K-shell of uranium at E = 1.0 MeV and θ̄ = 90◦, at the same energy it is only about
0.04 at θ̄ = 25◦, but exceeds 4.0 at θ = 150◦. These results are consistent with the results
reported in [5] where the relative difference between the S-matrix and the modified form factor
total atom differential cross sections can increase with increasing θ̄ exceeding 100% when
θ̄ = 90◦. This behaviour is most likely due to Aasf

j not quite converging to zero with increasing
energy. This may be due to omission of c(K̄ · P) in relevant equations from (3) to (22). Since
as one goes to higher Z and to inner shells, the electron momentum P will increase, this along
with increasing momentum transfer would cause K̄ = Ki ≈ Kf to no longer apply, at finite θ̂ ,
resulting in a greatly enhanced c(K̄ · P) contribution to Aasf , thereby increasing Āasf .

4. Summary

The modified form factor (including the form factor) amplitude has been decomposed into
subshell components as well as an infinite sum of electric and magnetic field multipoles by
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Figure 4. First four multipoles and total amplitude of the real component of the anomalous
scattering factor: the j th multipole contribution Re Aasf

pj (E, θ̄) = [Re Asm
pj (E, θ̄) − A

mf

pj (E, θ̄)]

and total amplitude Re Aasf
p (E, θ̄) = ∑n

j [Re Asm
pj (E, θ̄) − A

mf

pj (E, θ̄)]. Uranium atom, n = 32,

p = 1s1/2, units same as in figures 2 and 3. Aasf corresponds to the solid line; Aasf
1 to the dark

dashed line; Aasf
2 to the dark dotted line; Aasf

3 to the finely dotted line; and Aasf
4 to the dot-dash

line. (a) θ̄ = 0◦; (b) 50◦; (c) 100◦; and (d) 150◦.

starting with equation (3) in the high energy limit of Asm at low momentum transfer (K ≈ 0).
Omission of c(K̄ · P) yields the low K form factor amplitude Af 0. By assuming that the
charge density is spherically symmetrical, a very simple expression results for Af 0 = ∑

j A
f 0
j

(equation (22)).
The limited accuracy of equation (21) with respect to θ̄ dependence is quite clear, when

it is expressed in terms of A⊥ and A‖ as given by equation (22). Comparison of equation (22)
to that for Asm, represented by equation (23) shows that the only difference in angle dependence
is the additional cos θ̄ in equation (22), therefore [Af (E, K) − Af 0(E, K)] approaches zero
as θ̄ → 0◦. However this is still a fairly good approximation at high photon energies when
θ � 90◦.

Aasf can become quite large at lower E for the innermost shells of heavy atoms, but it
decreases rapidly with increasing n and decreasing Z, where the major contribution to Aasf

for middle and outer shells is due to resonances. However such resonance effects decrease
with increasing multipolarity. At energies up to about ten times the K-shell binding energy
only up to quadrupole Aasf

j for light atoms like Ca and for atoms as heavy as uranium only
up to the fourth multipole of Aasf

j are needed for an accurate Aasf . The relative size of the
individual multipole contributions to the total amplitude increase with increasing θ̄ especially
at θ̄ > 1200, but such effects partly cancelled out.
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Figure 5. Same as figure 4 but for Ca (Z = 20).

Although anomalous scattering factors are usually obtained from photoionization cross
sections, only accurate at forward angle scattering (see references in [8, 9]) it is possible to
derive an Aasf that is accurate at all angles. This was done for the nonrelativistic K-shell
case [8, 9]. The decomposition of Aasf outlined in this paper can serve as a test for various
levels of generality. For example one can test the validity of a new formula for a relativistic
angle-dependent Aasf(E, θ̄) first in the electric field dipole approximation, then one may go
to progressively higher multipoles (electric and magnetic) and test them. Also one may start
with an Aasf for the K-shell then go to higher shells testing possible formulations to predict
contributions from each subshell. Finally the derivations presented in this paper demonstrate
that the form factor f (q) can be derived from the second order S-matrix formalism in the limit
of high photon energy and low momentum transfer.

Appendix A

Taken from Zhou (p 49 in [15]). High energy and low momentum transfer limit of Asm

Asm
p = r0c

2

2

[〈
p

∣∣∣∣eiK·r (α · εf)(1 + α · Ki)(α · εi)

|Ep| − V − c(Ki · P)

∣∣∣∣ p
〉

+ 〈p
∣∣∣∣eiK · r (α · εi)(1 + α · Kf)(α · εf )

|Ep| − V − c(Kf · P)

∣∣∣∣p
〉]

(A.1)

Using

(α · A)(α · B) + (α · B)(α · A) = 2(A · B) (A.2)
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and assuming a small momentum transfer K̄ ≈ Ki ≈ Kf in the limit E → ∞ and averaging
over electron spin, one obtains

Asm
p � romc2[εi · ε∗

f ]

[〈
p

∣∣∣∣ e−iK·r

|Ep| − V − c(K̄ · P)

∣∣∣∣p
〉]

. (A.3)

Appendix B

Equation (22) can be verified by deriving equation (21) from equations (22), (24)–(27). First
it will be shown that the magnetic field amplitude form factor equation (19) is equal to

magA
f 0
pj (E, θ̄) = magA

f

⊥,pj (E, θ̄) + x
[

magA
f

‖,pj (E, θ̄)
]
, (B.1)

where x = cos(θ̄). Substitution of equations (26) and (27) into (24) and (25) with subsequent
substitution of the latter two equations into (B.1) and setting G0

pj = I 0
pj (discarding all λ = 1

terms) yields

magA
f 0
pj (E, θ̄) = −r0

2
(2j + 1)I 0

pj (E)

{
P 0

j (x) − P 2
j (x)

j (j + 1)

+
x

2

(
P 0

j−1(x) + P 0
j+1(x) +

P 2
j−1(x) + P 2

j+1(x)

j (j + 1)

)}
. (B.2)

The associated Legendre polynomials in (B.2) are eliminated by using Legendre’s differential
equation in the following form

P 2
l (x) = (1 − x2)P ′′

l (x) = 2xP 0′
l (x) − l(l + 1)P 0

l (x) (B.3)

setting l = j as well as l = j ± 1 and by substitution of the recursion

P 0′
l (x) = l

(
P 0

l−1(x) − xP 0
l (x)

)
(1 − x2)−1 (B.4)

into (B.3) followed by the substitution of (B.3) into (B.2) yields

magA
f 0
pj (E, θ̄) = − r0

2
(2j + 1)I 0

pj (E)

{
2P 0

j (x) − 2jx
[
P 0

j−1(x) − xP 0
j (x)

]
j (j + 1)(1 − x2)

+
x

j (j + 1)(1 − x2)

[
(1 − x2)

[
jP 0

j−1(x) − (j + 1)P 0
j+1

]

+ (j − 1)x
[
P 0

j−2 − xP 0
j−1(x)

]
+ (j + 1)x

[
P 0

j (x) − xP 0
j+1(x)

] }
. (B.5)

Then substitution of the recursion (j − 1)P 0
j−2(x) = (2j − 1)xP 0

j−1(x) − jP 0
j (x) and

(j + 1)P 0
j+1(x) = (2j + 1)xP 0

j (x) − jP 0
j−1(x) into (B.5) results in

magA
f 0
pj (E, θ̄) = −ro(2j + 1)I 0

pj (E)

{
P 0

j (x) − x
[
P 0

j−1(x) − xP 0
j (x)

]
(j + 1)(1 − x2)

+
x
[
P 0

j−1(x) − xP 0
j (x)

]
(j + 1)(1 − x2)

}
= −r0(2j + 1)I 0

pj (E)P 0
j (x) (B.6)

which agrees with equation (19). The electric field form factor amplitude (equation (21)) can
be derived from

elA
f 0
pj (E, θ̄) = elA

f

⊥,pj (E, θ̄) + x
[

elA
f

‖,pj (E, θ̄)
]

(B.7)
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starting with equations (24) and (25), but only taking the G1
j = I 1

j containing terms gives

elA
f 0
pj (E, θ̄) = −r0

2
(2j + 1)I 1

pj (E)

{
xP 0

j (x) − xP 2
j (x)

j (j + 1)

+
1

2

(
P 0

j−1(x) + P 0
j+1(x) +

P 2
j−1(x) + P 2

j+1(x)

j (j + 1)

)}
. (B.8)

The only difference between the angle-dependent parts of equations (B.2) and (B.8) is that x
is moved from the last three terms in brackets to the first two. This is because those two terms
in equation (B.8) correspond to the electric field component of A‖, while the first three terms
in equation (B.2) correspond to the magnetic field component of A‖. Then repeating the steps
taken to derive equation (B.6) from (B.2) yields

elA
f 0
pj (E) = −ro(2j + 1)I 1

pj (E)

[
xP 0

j (x) +

[
x2 − P 0

j−1(x) + xP 0
j (x)

]
+

[
P 0

j−1(x) − xP 0
j (x)

]
(j + 1)(1 − x2)

(B.9)

and after cancellation of terms equation (B.9) reduces to

elA
f 0
pj (E) = −r0

∑
j

(2j + 1)

(j + 1)
I 1
pj (E)

[
jxP 0

j (x) + P 0
j−1(x)

]
. (B.10)

Finally, substitution of the recursion (2j + 1)xP 0
j (x) = (j + 1)P 0

j+1 + jP 0
j−1(x) into

equation (B.10) results in equation (20) given by elA
f 0
pj (E, θ̄) = −r0

∑
pj I 1

j (E)
[
jP 0

j+1(x) +
(j + 1)P 0

j−1(x)
]
.
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